

Annual Drinking Water Quality Report Period of January 1 to December 31, 2022

For more information regarding this report contact Linda Peschel or Karen Carrias.

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono 979-357-2389.

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The Board of Directors meets every first Thursday of the month, unless it is a holiday, at 7:00 p.m. at the West End Water Supply Corporation office, 17210 Fordtran Blvd, Industry, Tx. These board meetings are open to the public.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in

plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water Assessments.

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Linda Peschel or Karen Carrias at 979-357-2389.

So	urce Water Name	Type of Water	Report Status	Location	County
1.	2279 Main St Industry	GW	A	Gulf Coast Aquifer	Austin
2.	832 FM 389 (Shelby)	GW	A	Gulf Coast Aquifer	Austin
3.	8081 E Hwy 159 (Willow Springs)	GW	A	Yegua Jackson Aquifer	Fayette
4.	720 FM 1457 Round Top	GW	A	Yegua Jackson Aquifer	Fayette

All four wells are treated by Chlorine Gas, and Polyphosphates at the Shelby Well.

Definitions and Abbreviations: The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (AGL): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG's allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if Possible) why an E.Coli violation has occurred.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. Coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the maximum contaminant level goals as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)

mrem/year: millirems per year (a measure of radiation absorbed by the body)

na: not applicable

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water – (ug/L)

ppm: milligrams per liter or parts per million – or one ounce in 7,350,000 gallons of water – (mg/L)

ppq: parts per quadrillion, or pictograms per liter (pg/L)

ppt: parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: a required process intended to reduce the level of a contaminant in drinking water

Regulated Contaminants

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
Total Coliform Bacteria		0	0	0	N	Naturally present in the environment

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely source of Contamination
Beta/Photon emitter	2021	7.6	6.8-7.6	0	50	pCi/l	N	Decay of natural and man-made deposits

EPA considers 50 pCi/L to be the level of concern for beta particles

El /I considers 50 pc//I			T	_				
Gross alpha excluding	2021	3	0-3	0	15	pCi/l	N	Erosion of natural deposits; runoff from orchards; runoff
radon and uranium								from glass and electronics production wastes.
Uranium	2021	1	0-1	0	30	ug/L		Erosion of natural deposits
Inorganic	Collection	Highest	Range of	MCLG	MCL	Units	Violation	Likely source of Contamination
Contaminants	Date	Level	Indivdual					
		Detected	Samples					
Arsenic	2022	8	6.2-8.4	0	10	ppb	N	Erosion of natural deposits; runoff from orchards; runoff
								from glass and electronics production wastes

While your drinking eater meets EPA standards for arsenic, it does contain some levels of arsenic. EPA's standard balances the current understanding of arsenics possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in

humas at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Asbestos (MFL)	2022	0.197	0.197	7	7		N	Decay of asbestos cement water mains; Erosion of natural deposits
Barium	2021	0.0934	0.0628- 0.0934	2	2	ppm	N	Discharge of drilling wastes; discharge from metal refineries; Erosion of natural deposits.

Fluoride	2021	0.65	0.45-0.65	4	4.0	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Nitrate (measured as Nitrogen)	2022	< 0.05	<0.05	10	10	mg/L	N	Runoff from fertilizer use; leaching from septic tanks sewage, erosion of natural deposits.
Selenium	2021	< 0.0030	<0.0030	50	50	ppb	N	Discharge from petroleum and metal refineries: Erosion of natural deposits; Discharge from mines.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely source of Contamination
Benzene	2022	<0.5	<0.5	0	5	ppb	N	Discharge from factories; Leaching from gas storage tanks and landfills.
Carbon tetrachloride	2022	<0.5	<0.5	0	5	ppb	N	Discharge from chemical plants and other industrial activities
0-Dichlorobenzene	2022	< 0.5	< 0.5	600	600	ppb	N	Discharge from industrial chemical factories.
Para-Dichlorobenzene	2022	<0.5	<0.5	75	75	ppb	N	Discharge from industrial chemical factories.
1,2 Dichloroethane	2022	<0.5	<0.5	0	5	ppb	N	Discharge from industrial chemical factories.
1,1 Dichloroethylene	2022	<0.5	<0.5	707	7	ppb	N	Discharge from industrial chemical factories.
Cis-1,2 Dichloroethylene	2022	<0.5	<0.5	100	70	ppb	N	Discharge from industrial chemical factories.
Trans-1,2 Dichloroethylene	2022	<0.5	<0.5	0	100	ppb	N	Discharge from industrial chemical factories.
Dichloromethane	2022	<0.5	<0.5	0	5	ppb	N	Discharge from pharmaceutical and chemical factories
1,2 Dichloropropane	2022	<0.5	<0.5	0	5	ppb	N	Discharge from industrial chemical factories.
Ethylbenzene	2022	<0.5	<0.5	700	700	ppb	N	Discharge from petroleum refineries
Haloacetic acids (HAA5)	2022	1	1.3-1.3	No goal for the total	60	ppb	N	By-Product of drinking water disinfection
The value in the Highes	t Level or Ave	rage Detected co	lumn is the hig	hest average	of all HAA5 s	ample rest	ilts collected	at a location over a year.
Styrene	2022	<0.5	<0.5	100	100	ppb	N	Discharge from rubber and plastic factories; Leaching from landfills.
Tetrachloroethylene	2022	<0.5	<0.5	0	5	ppb	N	Leaching from PVC pipes; Discharge from factories and dry cleaners
1,2,4- Trichlorobenzene	2022	<0.5	<0.5	70	70	ppb	N	Discharge from textile-finishing factories
1,1,1-Trichloroethane	2022	<0.5	<0.5	200	200	ppb	N	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane	2022	< 0.5	< 0.5	3	5	ppb	N	Discharge from industrial chemical factories
Trichloroethylene	2022	<0.5	<0.5	0	5	ppb	N	Discharge from metal degreasing sites and other factories
TTHMs (Total	2022	10.6	10.6-10.6	No goal for the	80	ppb	N	By-Product of drinking water disinfection

No goal for the

TTHMs (Total Trihalomethanes

				total				
Vinyl Chloride	2022	< 0.5	< 0.5	0	2	ppb	N	Leaching from PVC pipes; Discharge from plastic
								factories
Xylenes	2022	0.0012	0-0.0012	10	10	ppb	N	Discharge from Petroleum factories; Discharge from
								chemical factories.

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Constituent	Year or	Average	Minimum	Maximum	Secondary	Unit of	Source of Constituent
D' 1	Range	Level	Level	Level	Limit	Measure	
Bicarbonate	2021	440	417	455	NA	ppm	Corrosion of carbonate rocks such as limestone.
Baromoform	2021	4.0	3.0	7.5	100	ppm	Industrial runoff
Calcium	2021	1.37	6.65	32.9	NA	ppm	Abundant naturally occurring element
Chloride	2021	69	65	74	300	ppm	Abundant naturally occurring element; used in water purification; by product of field activity
Iron	2021	0.069	0.022	0.056	0.3	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities
Magnesium	2021	0.53	0	1.61	NA	ppm	Abundant naturally occurring element
Manganese	2021	0.0129	0.0086	0.0206	0.050	ppm	Abundant naturally occurring element
pН	2018	7.8	7.6	8.1	>7.0	units	Measure of corrosivity of water
Sodium	2021	194	155	217	NA	ppm	Erosion of natural deposits; byproduct of oil field activity
Sulfate	2021	33	32	35	300	ppm	Naturally occurring; common industrial byproduct; byproduct of oil field activity
Total Aklalinity as CaCO3	2021	360	342	373	NA	ppm	Naturally occurring soluble mineral salts
Total Dissolved Solids	2021	632	602	654	1000	ppm	Total dissolved mineral constituents in water
Total Hardness as CACO3	2021	43.1	16.6	88.8	NA	ppm	Naturally occurring calcium
Zinc	2021	0.0068	0	0.0068	5	ppm	Moderately abundant naturally occurring element; used in metal industry

Lead and Copper	Year	MCLG	Action	90 th	# Sites Over	Unites	Violation	Likely source of Contamination
Contaminant			Level	Percentile	AL			
			(AL)					
Copper	2022	1.3	1.3	0.16	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead	2022	0	15	1.7	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits
Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation	
Chlorine Gas	2022	0.87	0.86-0.88	4	4	ppm	N	Water additive used to control microbes.

In the Water Loss Audit submitted to the Texas Water Development Board for the time period January – December 2020, our system lost an estimated 14,918,475 gallons of water.