

westendw@industryinet.com

Annual Drinking Water Quality Report Period of January 1 to December 31, 2023

For more information on this report contact Linda Peschel or Karen Carrias.

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espanol, favor de llamar al telefono 979-357-2389.

This report is intended to provide you with important information about your drinking water and the efforts made by the water sytem to provide safe drinking water.

The Board of Directors meets every first Thursday of the month, unless it is a holiday, at 7:00 p.m. at the West End Water Supply Corporation office, 17210 Fordtran Blvd, Industry, TX. These board meetings are open to the public.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occuring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPS's Safe Drinking Water Hotline at 800-426-4791.

Contaminants that may be present in source water include:

- ~ Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- ~ Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- ~ Pesticides and herbicides, which may come from a varitey of sources such as agriculture, urban storm water runoff, and residential uses.
- ~ Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of indutrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- ~ Radioactive contaminants, which can be naturally-occuring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steriods; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for

drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www/epa.gov/safewater/lead.

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Linda Peschel or Karen Carrias at 979-357-2389.

Source Water Name	Type of Water	Report Status	Location	County
1. 2279 Main St Industry	GW	A	Gulf Coast Aquifer	Austin
2. 832 FM 389 Shelby	GW	A	Gulf Coast Aquifer	Austin
3. 8081 E Hwy 159 Willow Springs	GW	A	Yegua Jackson Aquifer	Fayette
4. 720 FM 1457 Round Top	GW	A	Yegua Jackson Aquifer	Fayette

All four wells are treated by Chlorine Gas, and Polyphosphates at the Shelby Well.

Definitions and Abbreviations: The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (AGL): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG's allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if Possible) why an E.Coli violation has occurred.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. Coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the maximum contaminant level goals as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)

mrem/year: millirems per year (a measure of radiation absorbed by the body)

na: not applicable

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water – (ug/L)

ppm: milligrams per liter or parts per million – or one ounce in 7,350,000 gallons of water – (mg/L)

ppq: parts per quadrillion, or pictograms per liter (pg/L)

ppt: parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: a required process intended to reduce the level of a contaminant in drinking water

Regulated Contaminants

Lead and Copper	Date	MCLG	Action	90th	# Sites	Units	Violation	Likely source of Contamination
Contaminant	Sampled		Level (AL)	Precentile	Over AL			
Copper	7/19/2022	1.3	1.3	0.16	0	ppm	N	Erosion of natural deposits; Leaching from wood
								preservatives; Corrision of household plumbing systems.
Lead	7/19/2022	0	15	1.7	0	ppb	N	Corrosion of household plumbing systems; Erosion of
								natural deposits
Inorganic	Collection	Highest	Range of	MCLG	MCL	Units	Violation	Likely source of Contamination
Contaminants	Date	Level	Individual					
		Detected	Samples					
Arsenic	2023	7	4.6-8.3	0	10	ppb	N	Erosion of natural deposits; runoff from orchards;
								runoff from glass and electronics production wastes.
While your drinking water	er meets EPA star	ndards for ars	enic, it does contain	low levels of	arsenic. EPA	s standard	balances the	e current understanding of arsenics possible
health effects against the	costs of removin	g arsenic fror	n drinking water. El	PA continues to	research th	e health ef	fects of low le	evels of arsenic, which is a mineral known
to cause cancer in human	s at high concent	rations and is	linked to other hea	lth effects such	as skin dam	age and ci	rculatory pro	blems.
Asbestos (MFL)	2022	0.197	0.197	7	7		N	Decay of asbestos cement water mains; Erosion of
								natural deposits.
Barium	2021	0.0934	0.0628-0.0934	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal
								refineries; Erosion of natural deposits.
Cyanide	2023	40	0-40	200	200	ppb	N	Discharge from plastic and fertilizer factories;
								Discharge from steel/metal factories.
Fluroide	2/1/2021	0.65	0.45-0.65	4	4.0	ppm	N	Erosion of natural deposits; water additive which
								promotes strong teeth; discharge from fertilizer
								and aluminum factories.
Nitrate (measured	2023	< 0.05	< 0.05	10	10	mg/L	N	Runoff from fertilizer use; leaching from septic tanks
as Nitrogen)								sewage, erosion of natural deposits.

Selenium	2021	< 0.0030	< 0.0030	50	50	ppb	N	Discharge from petroleum and metal refineries:
								Erosion of natural deposits; Discharge from mines.
Synthetic organic contaminants including Pesticides & Herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
2,4-D	2023	Levels lower than detect level	0-0	70	70	ppb	N	Runoff from herbicide used on row crops.
2,4,5-TP (Silvex)	2023	Levels lower than detect level	0-0	50	50	ppb	N	Residue of banned herbicide.
Alachlor	2022	Levels lower than detect level	0-0	0	2	ppb	N	Runoff from herbicide used on row crops.
Atrazine	2022	Levels lower than detect level	0-0	3	3	ppb	N	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2022	Levels lower than detect level	0-0	0	200	ppt	N	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2023	Levels lower than detect level	0-0	40	40	ppb	N	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0-0	0	2	ppb	N	Residue of banned termiticide.
Dalapon	2023	Levels lower than detect level	0-0	200	200	ppb	N	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2022	Levels lower than detect level	0-0	400	400	ppb	N	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2022	Levels lower than detect level	0-0	0	6	ppb	N	Discharge from rubber and chemical factories.
Dibromochloro- propane (DBCP)	2023	Levels lower than detect level	0-0	0	0	ppt	N	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2023	Levels lower than detect level	0-0	7	7	ppb	N	Runoff from herbicide used on soybeans and vegetables.
Endrin	2022	Levels lower than detect level	0-0	2	2	ppb	N	Residue of banned insecticide.
Ethylene dibromide	2023	Levels lower than detect level	0-0	0	50	ppt	N	Discharge from petroleum refineries.

Heptachlor	2022	Levels lower	0-0	0	400	ppt	N	Residue of banned termiticide.
		than detect						
		level						
Heptachlor	2022	Levels lower	0-0	0	200	ppt	N	Breakdown of heptachlor.
expoxide		than detect						
		level						
Hexachloro-	2022	Levels lower	0-0	0	1	ppb	N	Discharge from metal refineries and agricultural
benzene		than detect				11		chemical factories.
		level						
Hexachlorocyclo-	2022	Levels lower	0-0	50	50	ppb	N	Discharge from chemical factories.
pentadiene		than detect				11		
		level						
Lindane	2022	Levels lower	0-0	200	200	ppt	N	Runoff/leaching from insecticide used on cattle,
Lindane	2022	than detect	U U	200	200	PP		lumber, gardens.
		level						fulliori, gardens.
Methoxychlor	2022	Levels lower	0-0	40	40	ppb	N	Runoff/leaching from insecticide used on fruits,
initial on your	2022	than detect		TU	70	PPO	"	vegetables, alfalfa, livestock.
		level						vegetables, allalla, fivestock.
Oxamyl	2023	Levels lower	0-0	200	200	ppb	N	Runoff/leaching from insecticide used on apples,
(Vydate)	2023	than detect	0-0	200	200	ppo		potatoes and tomatoes.
(vydate)								potatoes and tomatoes.
Dantaahlaranhanal	2023	level Levels lower	0-0	0	1	nnh	N	Disabarga from wood preserving featories
Pentachlorophenol	2025		0-0	U	1	ppb	IN IN	Discharge from wood preserving factories.
		than detect						
D' -1	2022	level	0.0	500	500	1.	NT.	TT-1: '1 CC
Picloram	2023	Levels lower	0-0	500	500	ppb	N	Herbicide runoff.
		than detect						
a	2022	level	0.0					TX 11.11 00
Simazine	2022	Levels lower	0-0	4	4	ppb	N	Herbicide runoff.
		than detect						
		level			_			
Toxaphene	2022	Levels lower	0-0	0	3	ppb	N	Runoff/leaching from insecticide used on cotton and
		than detect						cattle.
		level						
Volatile Organic	Collection	Highest	Range of Levels	MCLG	MCL	Units	Violation	Likely source of Contamination
Contaminants	Date	Level	Detected					
		Detected						
Benzene	2023	< 0.5	< 0.5	0	5	ppb	N	Discharge from factories; Leaching from gas storage
								tanks and landfills.
Carbon tetrachloride	2023	< 0.5	< 0.5	0	5	ppb		Discharge from chemical plants and other industrial activities
o-Dichlorobenzene	2023	< 0.5	< 0.5	600	600	ppb	N	Discharge from industrial chemical factories.
para-Dichlorobenzene	2023	< 0.5	< 0.5	75	75	ppb	N	Discharge from industrial chemical factories.
1,2 Dichloroethane	2023	< 0.5	< 0.5	0	5	ppb	N	Discharge from industrial chemical factories.
1,1 Dichloroethylene	2023	< 0.5	< 0.5	7	7	ppb	N	Discharge from industrial chemical factories.
cis-1,2 Dichloroethylene	2023	< 0.5	< 0.5	70	70	ppb	N	Discharge from industrial chemical factories.
100:11 4.1	i	-0.5	< 0.5	100	100	ppb	N	Discharge from industrial chemical factories.
trans-1,2-Dichloroethylene	2023	< 0.5	<0.5	100	100	II.		6.
trans-1,2-Dichloroethylene Dichloromethane	2023	<0.5	<0.5	0	5	ppb	N	Discharge from pharmaceutical and chemical factories.

Ethylbenzene	2023	< 0.5	< 0.5	700	700	ppb	N	Discharge from petroleum refineries.
Haloacetic acids	2023	8	8.1-8.1	No goal	60	ppb	N	By-Product of drinking water disinfection.
(HAA5)				for the				
				total				
The value in the Highest Lev	vel or Average	e Detected col	umn is the highest a	average of all H	IAA5 sample	e results co	llected at a lo	ocation over a year.
Styrene	2023	< 0.5	< 0.5	100	100	ppb	N	Discharge from rubber and plastic factories; Leaching from landfills.
Tetrachloroethylene	2023	< 0.5	< 0.5	0	5	ppb	N	Leaching from PVC pipes; Discharge from factories and dry cleaners.
1,2,4-Trichlorobenzene	2023	< 0.5	< 0.5	70	70	ppb	N	Discharge from textile-finishing factories.
1,1,1-Trichloroethane	2023	< 0.5	< 0.5	200	200	ppb	N	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane	2023	< 0.5	< 0.5	3	5	ppb	N	Discharge from industrial chemical factories
Trichloroethylene	2023	< 0.5	< 0.5	0	5	ppb	N	Discharge from metal degreasing sites and other factories
TTHMs (Total	2023	11	10.6-10.6	No goal	80	ppb	N	By-Product of drinking water disinfection.
trihalomethanes)				for the				
				total				
The value in the Highest Lev	vel or Average	e Detected col	umn is the highest a	average of all T	THM sampl	e results co	ollected at a l	ocation over a year.
Vinyl Chloride	2023	< 0.5	< 0.5	0	2	ppb	N	Leaching from PVC pipes; Discharge from plastic factories.
Xylenes	2023	0.0012	0-0.0012	10	10	ppm	N	Discharge from Petroleum factories; Discharge from chemical factories
Radioactive	Collection	Highest	Range of	MCLG	MCL	Units	Violation	Likely source of Contamination
Contaminants	Date	Level	Individual					
		Detected	Samples					
Beta/Photon	2021	7.6	6.8-7.6	0	50	pCi/L	N	Decay of natural and man-made deposits.
emitters	EPA conside	ers 50 pCi/L to	be the level of con	cern for beta p	articles			
Gross alpha excluding	2021	3	0-3	0	15	pCi/l	N	Erosion of natural deposits.
radon and uranium								
Uranium	2021	1	0-1	0	30	ug/L	N	Erosion of natural deposits.

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Constituent	Year or	Average	Minimum	Maximum	Secondary	Unit of	Source of Constituent
	Range	Level	Level	Level	Limit	Measure	
Bicarbonate	2021	440	417	455	NA	ppm	Corrosion of carbonate rocks such as limestone
Bromoform	2021	4.0	3.0	7.5	100	ppm	Industrial runoff
Calcium	2021	16.37	6.65	32.9	NA	ppm	Abundant naturally occuring element
Chloride	2021	69	65	74	300	ppm	Abundant naturally occuring element; used in water purification;
							byproduct of field activity.
Iron	2021	0.069	0.022	0.056	0.3	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities
Magnesium	2021	0.53	0	1.61	NA	ppm	Abundant naturally occuring element
Manganese	2021	0.0129	0.0086	0.0206	0.05	ppm	Abundant naturally occuring element
рН	2021	7.8	7.6	8.1	>7.0	units	Measure of corrosivity of water
Sodium	2021	194	155	217	NA	ppm	Erosion of natural deposits; byproduct of oil fied activity
Sulfate	2021	33	32	35	300	ppm	Naturally occuring; common industrial byproduct; byproduct of oil field activity
Total Aklalinity as	2021	360	342	373	NA	ppm	Naturally occuring soluble mineral salts
CaCO3							
Total Dissolved Solids	2021	632	602	654	1000	ppm	Total dissolved mineral constituents in water
Total Hardness as	2021	43.1	16.6	88.8	NA	ppm	Naturally occuring calcium
CaCO3							
Zinc	2021	0.0068	0	0.0068	5	ppm	Moderately abundant naturally occurring element; used in metal industry

Coliform Bacteria									
Maximum	Total Colifor	rm	Highest No. of	Fecal Coliform or E.		Total No. of		Violation	Likely Source of Contamination
Contaminant Level	Maximum		Positive	Coli Maximun	n	Positive E. Coli or			
Goal	Contaminant	t Level		Contminant Level		Fecal Coliform			
						Samples			
Total Colform Bacteria			0	0			0	N	Naturally present in the environment
Disinfectant	Year	Average	Range of Levels	MRDL	MRDLG	Unit of	Violation	Source in d	rinking water

4

Measure

ppm

N

Water additive used to control microbes.

In the Water Loss Audit submitted to the Texas Water Development Board for the time period January - December 2020, our system lost an estimated 14,918,475 gallons of water.

4

Detected

0.88-0.97

Level

0.92

2023

Residual

Chlorine Gas